Structure of Tetralithium Tetrametaphosphate Pentahydrate

By M. T. Averbuch-Рouchot and A. Durif
Laboratoire de Cristallographie du CNRS associé à l'Université Scientifique et Médicale de Grenoble, BP 166 X, 38042 Grenoble CEDEX, France

(Received 4 July 1985; accepted 9 October 1985)

Abstract

Li}_{4} \mathrm{P}_{4} \mathrm{O}_{12} .5 \mathrm{H}_{2} \mathrm{O}, M_{r}=433.71\), monoclinic, C2/c, $\quad a=17.073$ (8), $\quad b=17.029$ (8) , $\quad c=$ 13.554 (6) $\AA, \beta=127.32(1)^{\circ}, V=3133.8 \AA^{3}, Z=8$, $D_{x}=1.838 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Ag} K \alpha)=0.5608 \AA, \quad \mu=$ $0.3 \mathrm{~mm}^{-1}, F(000)=1744, T=293 \mathrm{~K}$, final $R=0.034$ for 3022 independent observed reflexions. The atomic arrangement may be schematically described as a stacking of alternating $\mathrm{P}_{4} \mathrm{O}_{12}$ ring anions and cyclic $\mathrm{Li}_{8} \mathrm{O}_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ groups. Two of the five water molecules are of a zeolitic nature. The group of the five water molecules builds pentagonal rings with an average $\mathrm{O}(W)-\mathrm{O}(W)-\mathrm{O}(W)$ angle of $107 \cdot 6^{\circ}$, showing these rings to be flat.

Introduction. Hydrated lithium tetrametaphosphate was described for the first time by Grunze \& Thilo (1955). These authors reported for this salt a chemical formula corresponding to a tetrahydrate: $\mathrm{Li}_{4} \mathrm{P}_{4} \mathrm{O}_{12}$.$4 \mathrm{H}_{2} \mathrm{O}$. Later on, a crystal-chemistry study by Grenier \& Durif (1973) concluded that freshly prepared lithium tetrametaphosphate is a hexahydrate. From thermogravimetric experiments run with various aged specimens, these authors suspected that some of the water molecules must be of a zeolitic nature, with a departure of two of them at 343 K according to the following scheme:

$$
\begin{aligned}
& \mathrm{Li}_{4} \mathrm{P}_{4} \mathrm{Q}_{12} \cdot 6 \mathrm{H}_{2} \mathrm{O} \xrightarrow{343 \mathrm{~K}} \mathrm{Li}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O} \xrightarrow{443 \mathrm{~K}_{\mathrm{K}}} \mathrm{Li}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \\
& \xrightarrow{623 \mathrm{~K}} \mathrm{LiPO}_{3} .
\end{aligned}
$$

In the present structural work, the first one on lithium tetrametaphosphate, we observe the existence of three constitutional water molecules and of two zeolitic ones leading thus to the formula of a pentahydrate for this salt.

Experimental. Crystals were prepared by using the process reported by Grenier \& Durif (1973). Density not measured. $0.44 \times 0.42 \times 0.42 \mathrm{~mm}$ fragment of crystal. Philips PW 1100 diffractometer, graphite monochromator. Systematic absences: $h k l: h+k=2 n ; h 0 l$: $h=2 n, l=2 n .14$ reflexions ($10<\theta<15^{\circ}$) for refining unit-cell dimensions. ω scan. 5603 reflexions measured
$\left(3<\theta<30^{\circ}\right), \pm h, k, l, h_{\max }=30, k_{\max }=25, l_{\max }=19$. Scan width 1.20°, scan speed $0.02^{\circ} \mathrm{s}^{-1}$, total background measuring time 20 s . Two intensity and orientation reference reflexions (590 and $\overline{5} \overline{9} 0$) every 2 h , no variation. Lorentz-polarization correction, no absorption correction. Direct methods (MULTAN77, Main, Lessinger, Woolfson, Germain \& Declercq, 1977) used for structure determination. Anisotropic full-matrix least-squares refinement (on F). Unit weights. Final refinement with 3022 reflexions corresponding to: (a) $I>12 \sigma_{I}$, (b) $\sin \theta / \lambda>0.30 \AA^{-1}$. Final $R=0.034(w R=0.038)$. For the complete set of 5603 reflexions $R=0.051 . S=1 \cdot 141$. Max. $\Delta / \sigma=$ 2.30 (β_{13} of a zeolitic water molecule). Max. peak height in final difference Fourier synthesis $0.76 \mathrm{e} \AA^{-3}$. No extinction correction. Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974). Enraf-Nonius (1977) SDP used for all calculations. H atoms could not be located.

Final atomic coordinates and $B_{\text {eq }}$ are reported in Table 1.*

Discussion. The two crystallographically independent $\mathrm{P}_{4} \mathrm{O}_{12}$ ring anions observed in this atomic arrangement have a twofold symmetry. Examination of the interatomic distances and bond angles in these rings (Table 2) shows that they also have a strong pseudofourfold symmetry. Fig. 1 gives a projection along the b axis of part of this arrangement showing the respective locations of the $\mathrm{P}_{4} \mathrm{O}_{12}$ rings and Li atoms.
Three of the four Li atoms have a tetrahedral coordination comprising three O atoms and one water molecule [$\mathrm{Li}(2)$ and $\mathrm{Li}(4)]$ or four O atoms [$\mathrm{Li}(1)]$. The last Li atom $[\mathrm{Li}(3)]$ has a fivefold coordination: a square pyramid built up of four O atoms and one water molecule. These LiO_{4} or LiO_{5} polyhedra link themselves so as to form a large ring located around the twofold axis. The global formula of such a ring corresponds to $\mathrm{Li}_{8} \mathrm{O}_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$. Li atoms in the fivefold

[^0]coordination have a common edge with each of the two adjacent LiO_{4} tetrahedra while two adjacent LiO_{4} tetrahedra share a corner. The mean plane of such a ring is perpendicular to the b axis. Fig. 2 gives the projection of an $\mathrm{Li}_{8} \mathrm{O}_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ ring along the b axis.

Table 1. Final atomic coordinates and $B_{e q}$ for $\mathrm{Li}_{4} \mathrm{P}_{4} \mathrm{O}_{12} .5 \mathrm{H}_{2} \mathrm{O}$

$B_{\text {cll }}=\frac{4}{3} \mathcal{C i}_{i}{ }_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
P (1)	$0 \cdot 10931$ (4)	0.21852 (4)	0.72686 (5)	1.29 (1)
P (2)	$0 \cdot 10514$ (4)	0.22532 (4)	0.94042 (5)	1.25 (1)
$\mathrm{P}(3)$	$0 \cdot 10694$ (4)	0.47358 (4)	0.22564 (5)	1.103 (9)
$\mathrm{P}(4)$	0.10625 (4)	0.47192 (4)	0.44027 (5)	1.070 (9)
$\mathrm{O}(W 1)$	0.3302 (7)	0.3359 (6)	$0 \cdot 506$ (2)	24.3 (6)
$\mathrm{O}(W 2)$	$0 \cdot 1202$ (2)	0.0111 (2)	0.4616 (4)	4.88 (9)
$\mathrm{O}(W 3)$	0.0058 (2)	0.2491 (2)	0.1389 (3)	4.59 (7)
$\mathrm{O}(W 4)$	$0 \cdot 1691$ (2)	$0 \cdot 1354$ (2)	0.2255 (3)	4.55 (8)
$\mathrm{O}(W 5)$	0.0823 (3)	-0.0047 (3)	$0 \cdot 190$ (1)	15.4 (4)
$\mathrm{O}(E 11)$	0.8239 (1)	0.1498 (1)	0.7280 (2)	2.02 (4)
$\mathrm{O}(E 12)$	$0 \cdot 1187$ (1)	0.2823 (1)	0.6603 (2)	2.27 (4)
$\mathrm{O}(\mathrm{L} 12)$	0.1129 (1)	0.2586 (1)	0.8361 (2)	1.55 (3)
$\mathrm{O}(221)$	0.0003 (1)	$0 \cdot 1824$ (1)	0.6394 (2)	1.36 (3)
$\mathrm{O}(E 21)$	$0 \cdot 1020$ (1)	0.2945 (1)	0.0042 (2)	1.89 (4)
$\mathrm{O}(E 22)$	$0 \cdot 1790$ (1)	$0 \cdot 1637$ (1)	0.0161 (2)	$2 \cdot 30$ (4)
$\mathrm{O}(\mathrm{E} 31)$	0.1129 (1)	0.4083 (1)	0.1581 (1)	1.68 (3)
$\mathrm{O}(E 32)$	0.1801 (1)	0.5383 (1)	0.2786 (2)	1.63 (3)
$\mathrm{O}(\mathrm{L} 34)$	0.9999 (1)	0.5135 (1)	0.1396 (2)	1.28 (3)
$\mathrm{O}(\mathrm{E41})$	$0 \cdot 1819$ (1)	0.5347 (1)	0.5036 (1)	1.57 (3)
$\mathrm{O}(E 42)$	0.3915 (1)	0.0938 (1)	0.4858 (2)	1.67 (3)
$\mathrm{O}(\mathrm{L43})$	0.8913 (1)	0.4330 (1)	0.1662 (1)	1.26 (3)
$\mathrm{Li}(1)$	$0 \cdot 1898$ (3)	0.3784 (3)	0.1031 (3)	1.56 (8)
Li(2)	0.3113 (3)	$0 \cdot 1227$ (3)	$0 \cdot 3127$ (4)	1.98 (9)
Li(3)	-0.0010 (3)	0.3306 (4)	0.4736 (5)	2.4 (1)
$\mathrm{Li}(4)$	0.2316 (3)	0.0638 (3)	$0 \cdot 0405$ (4)	2.06 (9)

Fig. 1. Projection along the b axis of the atomic arrangement of $\mathrm{Li}_{4} \mathrm{P}_{4} \mathrm{O}_{12} .5 \mathrm{H}_{2} \mathrm{O}$. The two independent $\mathrm{P}_{4} \mathrm{O}_{12}$ anions are superimposed in this projection. Water molecules are not represented.

Fig. 2. Projection along the b axis of the $\mathrm{Li}_{8} \mathrm{O}_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ ring. In addition, unbonded water molecules are represented.

Table 2. Main interatomic distances (\AA) and bond angles $\left(^{\circ}\right)$ in the atomic arrangement of $\mathrm{Li}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot .5 \mathrm{H}_{2} \mathrm{O}$

The first ring anion

$\mathrm{P}(1)$	$\mathrm{O}($		$\mathrm{O}(E 12)$	$\mathrm{O}(\mathrm{L} 12)$	$\mathrm{O}(221)$
$\mathrm{O}(E 11)$	1.48		2.558 (3)	2.547 (3)	2.450 (3)
$O(E 12)$	119.		1.482 (2)	2.478 (3)	$2 \cdot 523$ (3)
$\mathrm{O}(L 12)$	111.		107.1 (1)	$1.597(2)$	2.505 (3)
$\mathrm{O}(L 21)$	105.		109.7 (1)	103.0(1)	1.604 (2)
$\mathrm{P}(2)$	O($\mathrm{O}(E 22)$	$\mathrm{O}(L 12)$	$\mathrm{O}(21)$
$\mathrm{O}(E 21)$	1.48		$2 \cdot 540$ (3)	2.472 (3)	2.522 (3)
$\mathrm{O}(E 22)$	118.		1.474 (2)	2.549 (3)	2.468 (3)
$\mathrm{O}(L 12)$	106		111.9 (1)	$1.602(2)$	2.513 (3)
$\mathrm{O}(221)$	109.		$106 \cdot 3$ (1)	103.0 (1)	$1.608(2)$
$\begin{aligned} & \mathrm{P}(1)-\mathrm{O}(L 12)-\mathrm{P}(2) \\ & \mathrm{P}(1)-\mathrm{O}(L 21)-\mathrm{P}(2) \end{aligned}$		133.6 (1) P((1)-P(2)	2.941 (1)
		130.3 (1) P($P(1)-P(2)$	2.914 (1)
$P(2)-P(1)-P(2)$		89.75 (3) P((1)-P(2)-P(1)	$90 \cdot 07$ (3)
The second ring anion					
P (3)	O ($\mathrm{O}(E 32)$	O(L34)	O(L43)
$\mathrm{O}(\mathrm{E} 31)$	1.48		2.571 (3)	$2 \cdot 530$ (3)	2.462 (3)
$\mathrm{O}(E 32)$	120.	(1)	1.484 (2)	2.484 (3)	2.523 (3)
O(L34)	110.	(1)	106.9 (1)	$1.604(2)$	2.516 (3)
$\mathrm{O}(243)$	105.	(1)	109.5 (1)	$103 \cdot 2$ (1)	1.605 (2)
$\mathrm{P}(4)$	O		$\mathrm{O}(E 42)$	$\mathrm{O}(234)$	O(L43)
$\mathrm{O}(E 41)$	1.48	(2)	2.569 (3)	2.495 (3)	2.525 (3)
$\mathrm{O}(E 42)$	119	(1)	1.488 (2)	2.536 (3)	2.489 (3)
$\mathrm{O}(234)$	107	(1)	$110 \cdot 1$ (1)	1.606 (2)	2.501 (3)
O(L43)	109	(1)	$106 \cdot 8$ (1)	102.1 (1)	1.611 (2)

$\mathrm{P}(3)-\mathrm{O}(L 34)-\mathrm{P}(4)$	$128.7(1)$	$\mathrm{P}(3)-\mathrm{P}(4)$	$2 \cdot 895(1)$
$\mathrm{P}(3)-\mathrm{O}(L 43)-\mathrm{P}(4)$	$130.2(1)$	$\mathrm{P}(3)-\mathrm{P}(4)$	$2.916(1)$
$\mathrm{P}(3)-\mathrm{P}(4)-\mathrm{P}(3)$	$89.35(3)$	$\mathrm{P}(4)-\mathrm{P}(3)-\mathrm{P}(4)$	$90.64(3)$

LiO_{n} polyhedra
$\mathrm{Li}^{(1) \mathrm{O}_{4} \text { tetrahedron }}$

$\mathrm{Li}(1)-\mathrm{O}(E 11)$	1.908 (5)	$\mathrm{Li}(1)-\mathrm{O}(E 31)$	1.931 (5)
$\mathrm{Li}(1)-\mathrm{O}(E 21)$	1.911 (5)	$\mathrm{Li}(1)-\mathrm{O}(E 41)$	1.949 (5)
	Averag	O 109.25	
$\mathrm{Li}(2) \mathrm{O}_{4}$ tetrahedron			
$\mathrm{Li}(2)-\mathrm{O}(E 12)$	1.911 (6)	$\mathrm{Li}(2)-\mathrm{O}(E 42)$	1.930 (5)
$\mathrm{Li}(2)-\mathrm{O}(E 32)$	1.959 (5)	$\mathrm{Li}(2)-\mathrm{O}(W 4)$	1.964 (6)
	Average $\mathrm{O}-\mathrm{Li}-\mathrm{O} \quad 109.55$		
$\mathrm{Li}(3) \mathrm{O}_{4}$ polyhedron			
$\mathrm{Li}(3)-\mathrm{O}(E 12)$	2.233 (6)	$\mathrm{Li}(3)-\mathrm{O}(E 21)$	2.018 (6)
$\mathrm{Li}(3)-\mathrm{O}(W 3)$	2.025 (7)	$\mathrm{Li}(3)-\mathrm{O}(E 31)$	$2 \cdot 110$ (6)
	$\mathrm{Li}(3)$	$2 \cdot 051$ (6)	

$\mathrm{Li}(4) \mathrm{O}_{4}$ tetrahedron

$\mathrm{Li}(4)-\mathrm{O}(E 22)$	1.857 (6)	$\mathrm{Li}(4)-\mathrm{O}(E 32)$	1.998 (5)
$\mathrm{Li}(4)-\mathrm{O}(W 2)$	1.980 (6)	$\mathrm{Li}(4)-\mathrm{O}(E 41)$	1.964 (5)
	Average	O 109.29	
$\mathbf{P}-\mathrm{Li}$ distances			
$\mathrm{P}(1)-\mathrm{Li}(1)$	$3 \cdot 196$ (4)	$\mathrm{P}(2)-\mathrm{Li}(1)$	$3 \cdot 144$ (5)
$\mathrm{P}(1)-\mathrm{Li}(2)$	$3 \cdot 212$ (5)	$\mathrm{P}(2)-\mathrm{Li}(3)$	3.201 (5)
$\mathrm{P}(1)-\mathrm{Li}(3)$	3.337 (6)	$\mathrm{P}(2)-\mathrm{Li}(4)$	$3 \cdot 242$ (5)
$\mathrm{P}(3)-\mathrm{Li}(1)$	$3 \cdot 200$ (4)	$\mathrm{P}(4)-\mathrm{Li}(1)$	3.096 (5)
$\mathrm{P}(3)-\mathrm{Li}(2)$	3.089 (5)	$\mathrm{P}(4)-\mathrm{Li}(2)$	$3 \cdot 173$ (5)
$\mathrm{P}(3)-\mathrm{Li}(3)$	3.251 (6)	$\mathrm{P}(4)-\mathrm{Li}(3)$	3.218 (5)
$\mathrm{P}(3)-\mathrm{Li}(4)$	$3 \cdot 068$ (5)	$\mathrm{P}(4)-\mathrm{Li}(4)$	3.051 (5)
$\mathrm{Li}-\mathrm{Li}$ distances			
$\mathrm{Li}(1)-\mathrm{Li}(3)$	$2 \cdot 842$ (7)	$\mathrm{Li}(2)-\mathrm{Li}(3)$	$2 \cdot 853$ (7)
$\mathrm{Li}(1)-\mathrm{Li}(4)$	3.118(7)	Li(2)-Li(4)	$3 \cdot 222$ (7)

Distances and bond angles in the pentagonal $\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$ ring			
$\mathrm{O}(W 1)-\mathrm{O}(W 2)$	$2.693(13)$	$\mathrm{O}(W 2)-\mathrm{O}(W 1)-\mathrm{O}(W 3)$	$106.8(6)$
$\mathrm{O}(W 1)-\mathrm{O}(W 3)$	$2.790(14)$	$\mathrm{O}(W 1)-\mathrm{O}(W 2)-\mathrm{O}(W 5)$	$110.1(4)$
$\mathrm{O}(W 2)-\mathrm{O}(W 5)$	$2.763(6)$	$\mathrm{O}(W 1)-\mathrm{O}(W 3)-\mathrm{O}(W 4)$	$107.4(3)$
$\mathrm{O}(W 3)-\mathrm{O}(W 4)$	$2.989(5)$	$\mathrm{O}(W 3)-\mathrm{O}(W 4)-\mathrm{O}(W 5)$	$102.9(2)$
$\mathrm{O}(W 4)-\mathrm{O}(W 5)$	$2.693(6)$	$\mathrm{O}(W 2)-\mathrm{O}(W 5)-\mathrm{O}(W 4)$	$110.6(18)$

Thus the atomic arrangement of $\mathrm{Li}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ may be schematically represented as a stacking of alternate $\mathrm{P}_{4} \mathrm{O}_{12}$ and $\mathrm{Li}_{8} \mathrm{O}_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ rings along the twofold axes.
In addition, the existence of two water molecules should be noted: $\mathrm{O}(W 1)$ and $\mathrm{O}(W 5)$ not bonded to the associated cations. During the structure determination, they appeared to be affected by large thermal factors. In such cases, it is always difficult to decide if the magnitude of these factors corresponds to the mobility of this type of water or to a partially occupied crystallographic site.
The group of five water molecules builds pentagonal rings around the c axis. In these pentagonal rings the average $\mathrm{O}(W)-\mathrm{O}(W)-\mathrm{O}(W)$ angle is 107.6° showing these rings to be flat within the experimentalerror range since this value should be 108° for a flat regular pentagon.

Table 2 reports the main interatomic distances and bond angles in this atomic arrangement.

References

Enraf-Nonius (1977). Structure Determination Package. RSX 11 M version. Enraf-Nonius, Delft.
Grenier, J. C. \& Durif, A. (1973). Z. Kristallogr. 137, 10-16.
Grunze, H. \& Thlo, E. (1955). Z. Anorg. Allg. Chem. 281, 284-292.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declerce, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1986). C42, 131-133

Structure of Tetracaesium Tetrametaphosphate Tetrahydrate

By M. T. Averbuch-Pouchot and A. Durif
Laboratoire de Cristallographie du CNRS associé à l'Université Scientifique et Médicale de Grenoble, BP 166 X, 38042 Grenoble CEDEX, France

(Received 11 July 1985; accepted 9 October 1985)

Abstract

Cs}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}, M_{r}=916 \cdot 56\), tetragonal, $P 4_{1}, a=9.466{ }^{(5)}, c=21.933$ (9) $\AA, V=1965.3 \AA$, $Z=4, \quad D_{x}=3.107 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Ag} K \bar{\alpha})=0.5608 \AA, \mu$ $=4.05 \mathrm{~mm}^{-1}, F(000)=1664, T=293 \mathrm{~K}$, final $R=$ 0.035 for 1654 independent observed reflexions. The atomic arrangement may be described as alternating layers of $\mathrm{P}_{4} \mathrm{O}_{12}$ ring anions and caesium polyhedra perpendicular to the c axis. The rubidium salt $\mathrm{Rb}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ is isotypic, with $a=9.163$ (3), $c=$ 21.356 (8) $\AA, D_{x}=2.703 \mathrm{Mg} \mathrm{m}^{-3}$ and $V=1793.8 \AA^{3}$.

Introduction. Various alkali-metal tetrametaphosphates have previously been described: $\mathrm{Li}_{4} \mathrm{P}_{4} \mathrm{O}_{12} .5 \mathrm{H}_{2} \mathrm{O}$ (Averbuch-Pouchot \& Durif, 1986), two crystalline forms of $\mathrm{Na}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Ondik, 1964; Ondik, Block \& MacGillavry, 1961), $\mathrm{Na}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{4} \mathrm{P}_{4} \mathrm{O}_{12}$ (Wiench \& Jansen, 1983), $\mathrm{K}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (AverbuchPouchot \& Durif, 1985b), $\mathrm{K}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (AverbuchPouchot \& Durif, 1985a) but, up to now, nothing was known concerning the rubidium and caesium tetrametaphosphates. In the present study, we describe the crystal structure of caesium tetrametaphosphate tetrahydrate: $\mathrm{Cs}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$.

Experimental. Rubidium and caesium tetrametaphosphate tetrahydrates have been synthesized by slowly adding the stoichiometric amount of $\mathrm{P}_{4} \mathrm{O}_{10}$ to a water
solution of the appropriate carbonate kept at 273 K . The resulting solution is then slowly evaporated at room temperature. Crystals of these two salts are large distorted octahedra.

Density not measured. Cubic fragment $0.25 \times$ $0.25 \times 0.25 \mathrm{~mm}$. Philips PW 1100 diffractometer, graphite monochromator. Systematic absences: 00l, $l=4 n .18$ reflexions $\left(9<\theta<12^{\circ}\right)$ for refining unit-cell dimensions. ω scan. 2087 reflexions measured ($3<$ $\theta<25^{\circ}$), $h k l, h_{\text {max }}=14, k_{\text {max }}=14, l_{\text {max }}=33$. Scan width 1.20°, scan speed $0.02^{\circ} \mathrm{s}^{-1}$, total background measuring time 20 s . Two orientation and intensity reflexions (008 and $00 \overline{8}$) every 2 h , no variation. Lorentz and polarization correction, no absorption correction. Classical methods for structure determination: Patterson and successive Fourier syntheses. Anisotropic full-matrix least-squares refinement (on F). Unit weights. Final refinement with 1654 reflexions corresponding to $I>6 \sigma(I)$. Final $R=0.035$ ($w R$ $=0.040$). For the complete set of unique reflexions (2087) $R=0.043$. Extinction coefficient refined: 0.34×10^{-8} (Stout \& Jensen, 1968). $S=4.12$. Max. $\Delta / \sigma=0.29$ [β_{11} of $\mathrm{O}(W 4)$]. Max. peak height in final difference Fourier synthesis $0.692 \mathrm{e} \AA^{-3}$. Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974). EnrafNonius (1977) SDP used for all calculations. H atoms could not be located.

[^1]
[^0]: * Lists of observed and calculated structure factors and of anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42568 (23 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: © 1986 International Union of Crystallography

